

SAND: Boosting LLM Agents with Self-Taught Action Deliberation

Yu Xia¹ Yiran Shen¹ Junda Wu¹
Ryan A. Rossi² Lina Yao^{3,4}

¹University of California San Diego

³University of New South Wales

Tong Yu² Sungchul Kim² Julian McAuley¹

²Adobe Research ⁴CSIRO's Data61

Motivation

LLM agents are commonly finetuned with SFT on ReAct expert trajectories or preference optimization over pairwise rollouts.

Existing methods:

- o focus on imitating specific expert behaviors
- o promote chosen reasoning actions over rejected ones
- may over-commit towards seemingly plausible but suboptimal actions due to limited action space exploration

Our method:

- enables LLM agents to explicitly deliberate over candidate actions before committing to one
- finetunes LLM agents with self-synthesized deliberation thoughts in an iterative manner

Task: Put a Clean Egg in the Microwave Observation: You pick up egg 1 from the countertop 3 Thought: Now that I have the egg, I need to go back to the microwave to complete the task. Action: go to microwave 1 (x) Egg not cleaned SFT Thought: I now have the egg. I have several options for the next step. go to microwave 1: this action seems valid but I am SAND not sure if the egg has already been cleaned. (Ours) clean egg 1 with sinkbasin 1: this action might not be valid as I am not at the sink yet. go to sinkbasin 1: this can be the most direct way to advance the task as I can clean the egg there. Comparing these candidates, I will choose to go to sinkbasin 1 because this can allow me to clean...

Action: go to sinkbasin 1

Methodology

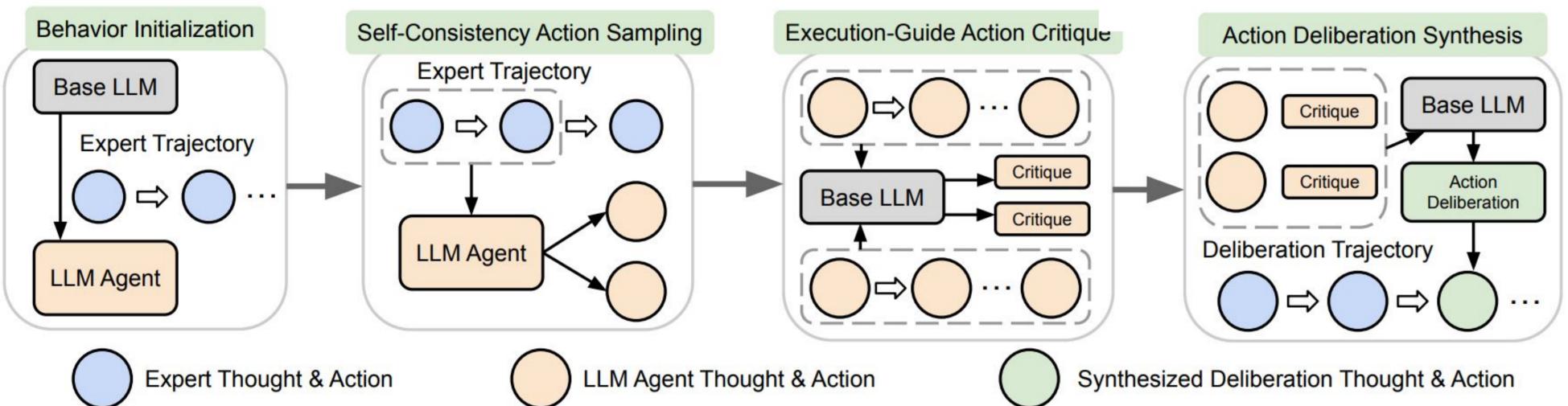
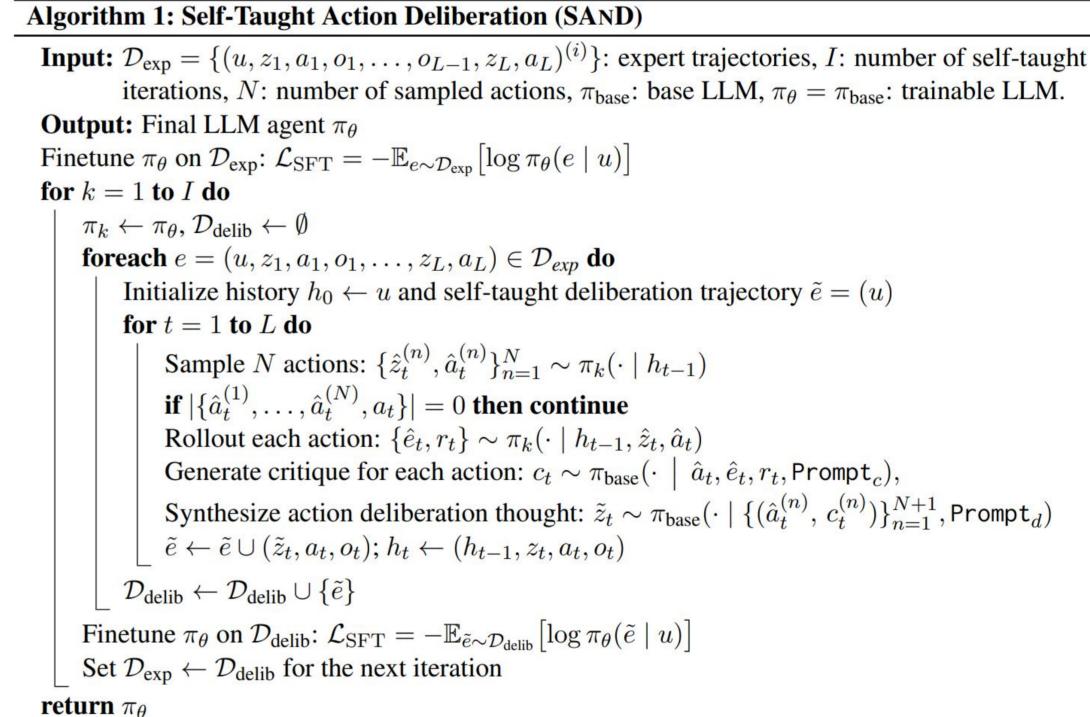


Figure 2: An illustration of our SAND framework for synthesizing one step of action deliberation thoughts.



Experiments

- SAND outperforms existing agent tuning methods on SciWorld and ALFWorld (Table 2).
- Action deliberation improves LLM agents at step-level across iterations (Figure 3).
- LLM agents finetuned with SAND learn when to deliberate (Figure 4).
- For more results please refer to our paper.

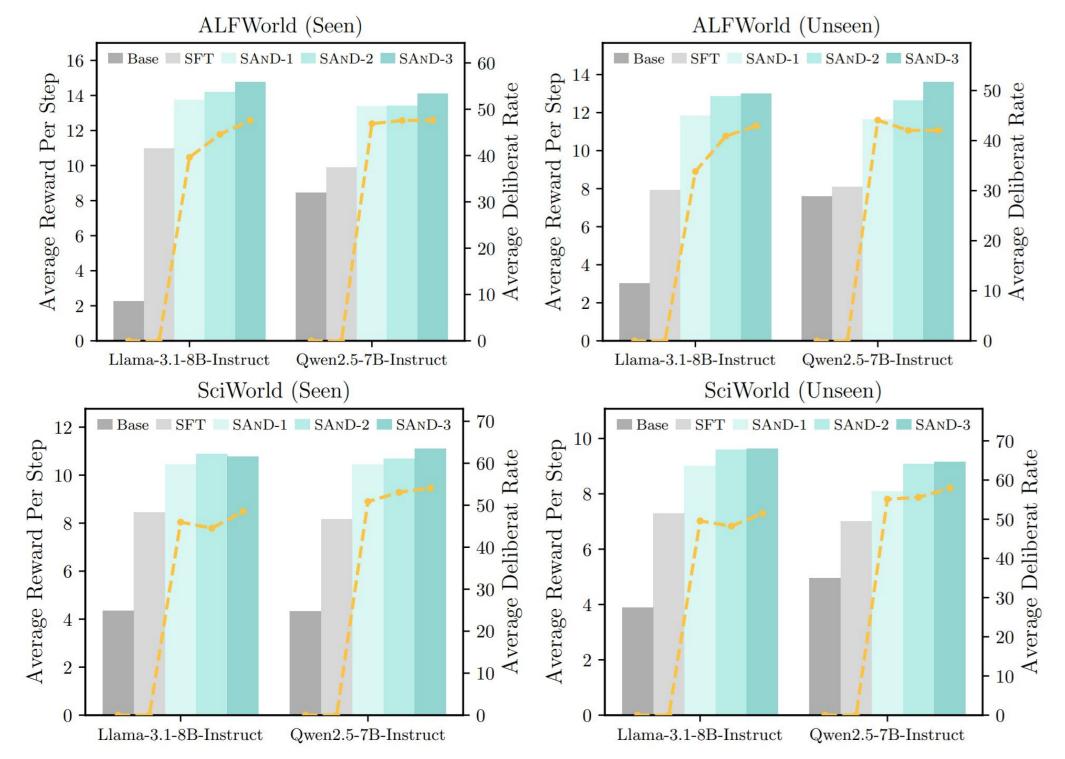


Figure 3: Average reward per step (bars) and average action deliberation rate per step (lines)

Model	Single Agent	ScienceWorld		ALFWorld		Average
		Seen	Unseen	Seen	Unseen	liverage
Agents w/ Training						
Qwen2.5-7B-Instruct + SFT (Zeng et al., 2024)	✓	69.2	60.8	72.1	75.4	69.4
Llama-3.1-8B-Instruct + SFT (Zeng et al., 2024)	✓	75.6	65.1	79.3	71.6	72.9
Llama-3.1-8B-Instruct + ETO (Song et al., 2024b)	✓	81.3	74.1	77.1	76.4	77.2
Llama-3.1-8B-Instruct + KnowAgent (Zhu et al., 2025)	✓	81.7	69.6	80.0	74.9	76.6
Llama-3.1-8B-Instruct + WKM (Qiao et al., 2024)	X	82.1	76.5	77.1	78.2	78.5
Llama-3.1-8B-Instruct + ETO&MPO (Xiong et al., 2025)	X	83.4	80.8	85.0	79.1	82.1
Qwen2.5-7B-Instruct + SAND (Iteration 1)	✓	80.9	67.2	85.7	85.0	79.7
Qwen2.5-7B-Instruct + SAND (Iteration 2)	✓	83.2	69.9	85.0	89.6	81.9
Qwen2.5-7B-Instruct + SAND (Iteration 3)	✓	84.0	69.0	90.7	94.8	84.6
Llama-3.1-8B-Instruct + SAND (Iteration 1)	✓	86.6	77.5	92.9	91.8	86.0
Llama-3.1-8B-Instruct + SAND (Iteration 2)	✓	88.7	78.2	94.3	94.0	88.8
Llama-3.1-8B-Instruct + SAND (Iteration 3)	✓	85.7	79.1	94.3	96.3	88.9

Table 2: Average rewards of all compared methods on two datasets. SAND significantly improves LLM agents across different model backbones, outperforming proprietary LLMs as well as state-of-the-art multi-agent approaches.

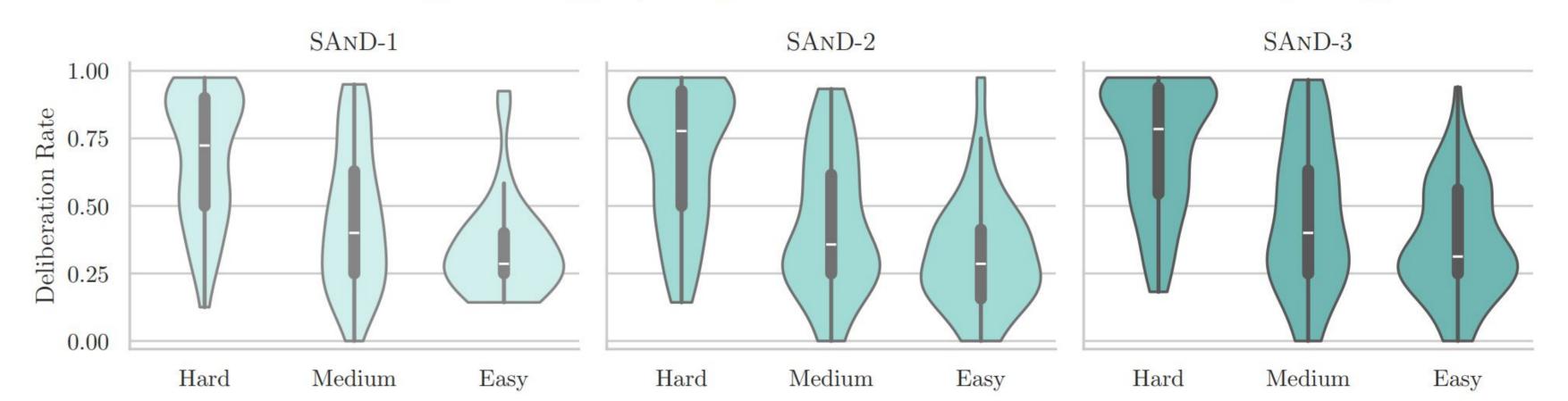


Figure 4: Action deliberation rate distribution across three difficulty bands in unseen test set on ScienceWorld. Each panel corresponds to a SAND iteration starting from Llama-3.1-8B-Instruct. The difficulty bands *Hard*, *Medium*, *Easy* are determined based on the tertiles of reward distribution from the base Llama-3.1-8B-Instruct. The results show that more SAND iterations teach LLM agents to deliberate more on hard tasks and less on easy tasks.