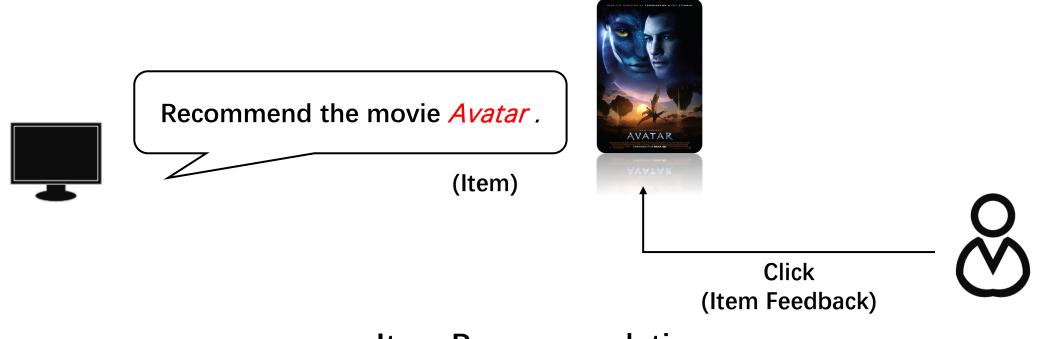
User-Regulation Deconfounded Conversational Recommender System with Bandit Feedback

Yu Xia^{1,4}, Junda Wu², Tong Yu³*, Sungchul Kim³, Ryan A. Rossi³, Shuai Li¹ ¹Shanghai Jiao Tong University, ²New York University, ³*Adobe Research, ⁴University of Michigan

Traditional Recommender System



Item Recommendation

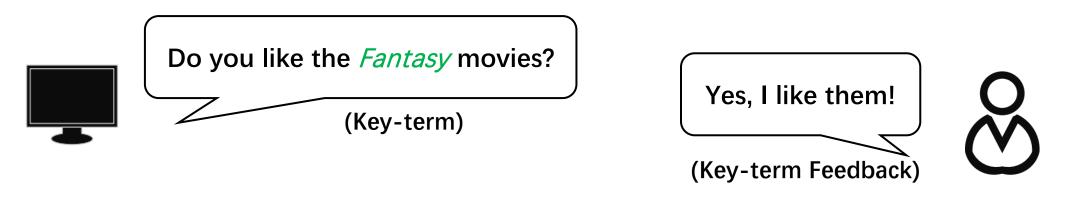
Traditional Recommender System

Item Recommendation

What if there is a new user?

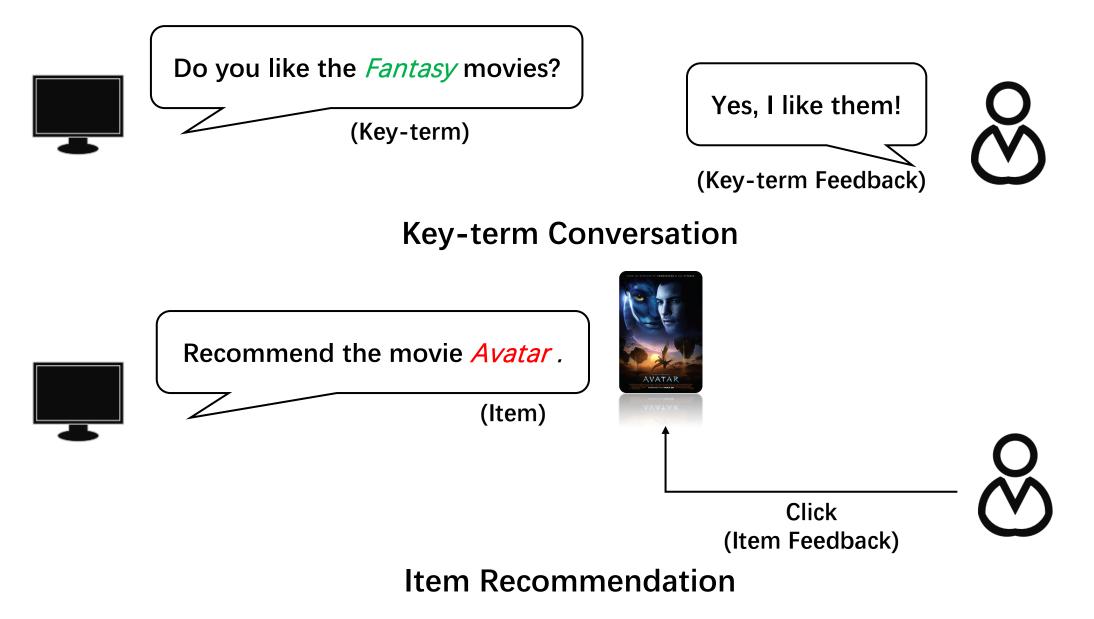
How to deal with the cold-start scenario?

Conversational Recommender System



Key-term Conversation

Conversational Recommender System



Conversational Recommender System

Avatar • The introduction of key-term click Action conversation aims to Fantasy accelerate the user preference learning. Recommended like Dune However, the explicit Fantasy modelling of key-term don't preference can also introduce like John Wick biases. Action

Causal View of CRS

U: item-level user preferenceM: key-term-level user preferenceI: item representationY: prediction scoreK: user regulation

1. Conventional CRS

• Confounder: key-term-level user preference

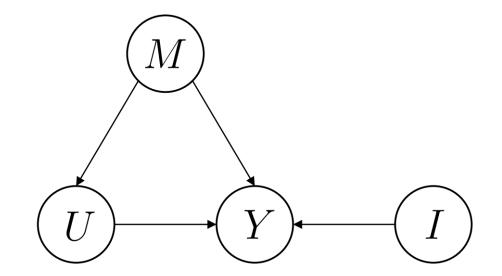
$$P(Y \mid U = u, I = i)$$

$$\stackrel{(1)}{=} \sum_{m \in \mathcal{M}} P(Y, m \mid u, i)$$

$$\stackrel{(2)}{=} \sum_{m \in \mathcal{M}} P(Y, u \mid u, i) P(u \mid u, i)$$

$$\stackrel{(2)}{=} \sum_{m \in \mathcal{M}} P(Y \mid u, i, m) P(m \mid u, i)$$

$$\stackrel{(3)}{=} \sum_{m \in \mathcal{M}} P(Y \mid u, i, m) P(m \mid u)$$



Causal View of CRS

U: item-level user preferenceM: key-term-level user preferenceI: item representationY: prediction scoreK: user regulation

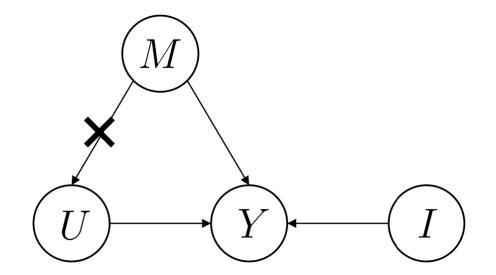
- 2. Deconfounded CRS w. Backdoor Adjustment
 - *do*-calculus eliminating confounding effect

$$P(Y \mid do(U = u), I = i)$$

$$\stackrel{(1)}{=} \sum_{m \in \mathcal{M}} P(Y \mid do(U = u), i, m) P(m \mid do(U = u), i)$$

$$\stackrel{(2)}{=} \sum_{m \in \mathcal{M}} P(Y \mid do(U = u), i, m) P(m \mid do(U = u))$$

$$\stackrel{(3)}{=} \sum_{m \in \mathcal{M}} P(Y \mid u, i, m) P(m).$$



Causal View of CRS

U: item-level user preferenceM: key-term-level user preferenceI: item representationY: prediction scoreK: user regulation

- 3. Deconfounded CRS w. User-Regulated Backdoor Adjustment
 - Not all biases are harmful.
 - Utilize user feedback to identify useful biases
 - Adaptively regulate the effect of backdoor

adjustment. User-Regulation Coefficient

$$\hat{P}(Y | U, I) = \eta P(Y | U, I) + (1 - \eta) P(Y | do(U), I)$$

Before Backdoor Adjustment After Backdoor Adjustment K

M

User-Regulation Deconfounded CRS

From the item feedback together with the key-term feedback, we can potentially capture more accurate preference relations

User-Regulation Deconfounded CRS

User-Regulation Coefficient •

$$\eta = \frac{\sum_{\mathcal{D}} \mathbf{1}[(Positive, Positive)]}{\sum_{\mathcal{D}} \mathbf{1}}$$

Before Backdoor

Adjustment

• Adaptively control the effect of backdoor adjustment in a personalized manner.

• User-Regulation Coefficient

$$\eta = \frac{\sum_{\mathcal{D}} \mathbf{1}[(Positive, Positive)]}{\sum_{\mathcal{D}} \mathbf{1}}$$
• Adaptively control the effect
of backdoor adjustment in a
personalized manner.

$$\hat{P}(Y | U, I) = \eta P(Y | U, I) + (1 - \eta) P(Y | do(U), I)$$
Before Backdoor
Adjustment
$$After Backdoor
Adjustment
$$After Backdoor$$$$

User-Regulation Deconfounded CRS (Implementation)

- **DecUCB:** A new upperconfidence-based contextual bandit algorithm for CRS.
- **EE Trade-off:** Balance Exploration and Exploitation in the cold-start setting.
- Online Debiasing: Userregulated backdoor adjustment in an online algorithm.

For more technical details, please refer to our paper.

Algorithm 1: DecUCB

- Input:1) user u ∈ U with t = t_u rounds of historical interaction, parameters M_u, b_u, M̃_u and b̃_u;
 2) candidate arms A_t, related key-terms K_t, weight W;
 3) regularization parameters λ, λ̃, and exploration parameters α, α̃, user regulation scale ε.
- 1 if t = 0 then
- ² Initialize $\mathbf{M}_u = (1 \lambda)\mathbf{I}, \mathbf{b}_u = \mathbf{0}, \ \tilde{\mathbf{M}}_u = \tilde{\lambda}\mathbf{I}, \ \tilde{\mathbf{b}}_u = \mathbf{0};$

3 Compute
$$\tilde{\theta}_u = \tilde{M}_u^{-1} \tilde{b}_u$$
;

- 4 Compute θ according to Section 5.2;
- 5 Select an item $a_t \in \mathcal{A}_t$ according to Equation 14;
- 6 Collect the set of key-terms \mathcal{K}_{a_t} related to a_t ;
- 7 Select an key-term $k_t \in \mathcal{K}_{a_t}$ according to Section 5.1;
- 8 Receive the item feedback $r_{a_t,t}$ and the key-term feedback $\tilde{r}_{k_t,t}$ according to Equation 1 and Equation 3, respectively;
- 9 Update $\mathbf{M}_u = \mathbf{M}_u + \lambda \mathbf{x}_{a_t} \mathbf{x}_{a_t}^{\top}, \mathbf{b}_u = \mathbf{b}_u + \lambda r_{a_t} \mathbf{x}_{a_t};$
- 10 Update $\tilde{\mathbf{M}}_u$ and $\tilde{\mathbf{b}}_u$ according to Algorithm 2;

User-Regulation Deconfounded CRS (Insights)

• **Item Selection:** Based on the deconfounded reward estimation plus the corresponding upper-confidence bound.

$$a_t = \arg \max_{a \in \mathcal{A}_t} Y_{a,u} + \lambda \alpha \| \mathbf{x}_a \|_{\mathbf{M}_u^{-1}} + (1 - \lambda) \tilde{\alpha} \| \mathbf{M}_u^{-1} \mathbf{x}_a \|_{\tilde{\mathbf{M}}_u^{-1}}$$

• **Key-term Selection:** Chosen from key-terms related to the recommended item, which reduces the most uncertainty in the next round of recommendation.

$$k = \arg \max_{k' \in \mathcal{K}_{a_t}} \frac{\left\| \mathbf{X}_t \mathbf{M}_u^{-1} \tilde{\mathbf{M}}_u^{-1} \tilde{\mathbf{x}}_{k'} \right\|_2^2}{1 + \tilde{\mathbf{x}}_{k'}^\top \tilde{\mathbf{M}}_u^{-1} \tilde{\mathbf{x}}_{k'}},$$

For more technical details, please refer to our paper.

Table 1: Statistics of the datasets used in our experiments.

Datasets

Dataset	Last.FM	MovieLens	BibSonomy
# of users	400	400	400
# of items	2,000	2,000	2,000
# of key-terms	2,726	5,585	5,472
avg. # of related key-terms	16.55	11.37	16.75
avg. # of related items	12.14	4.071	6.12

• Baselines

- LinUCB [15]: A state-of-the-art contextual bandit approach without conversational feedback.
 - **ConUCB** [40]: A recently proposed conversational contextual bandit algorithm that conducts key-term conversations with users before recommending an item. For fair comparison, we enable ConUCB to conduct key-term conversation in each round.
- **DecUCB**_{w/o UR}: A variant of our proposed DecUCB that performs backdoor adjustment without any user regulation.

• Recommendation Accuracy (Cumulative Regret)

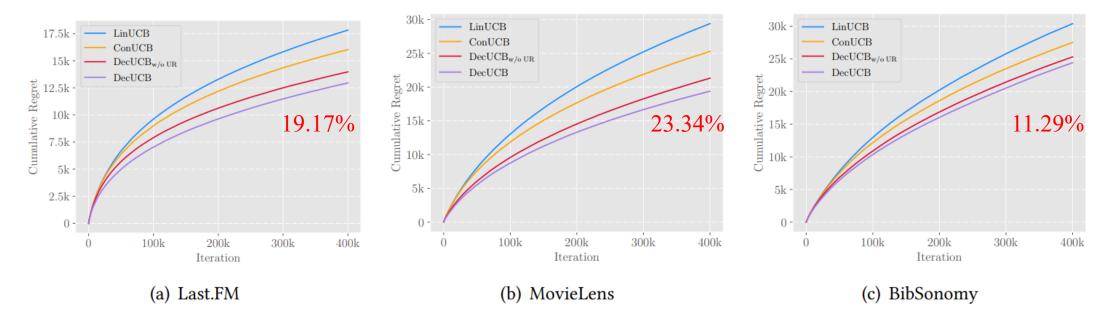


Figure 3: Cumulative regret on Last.FM, MovieLens and BibSonomy datasets with equal number of user feedback.

• Bias Mitigation (KL-Divergence)

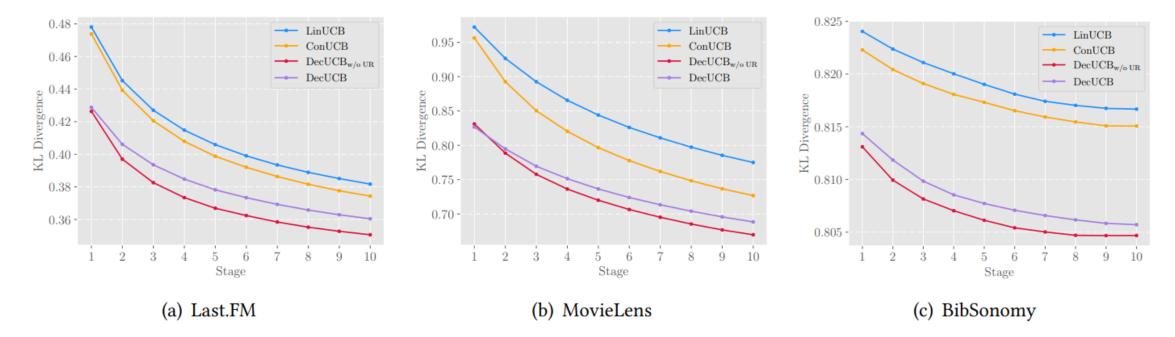


Figure 4: KL divergence across difference stages of recommendation with equal number of user feedback.

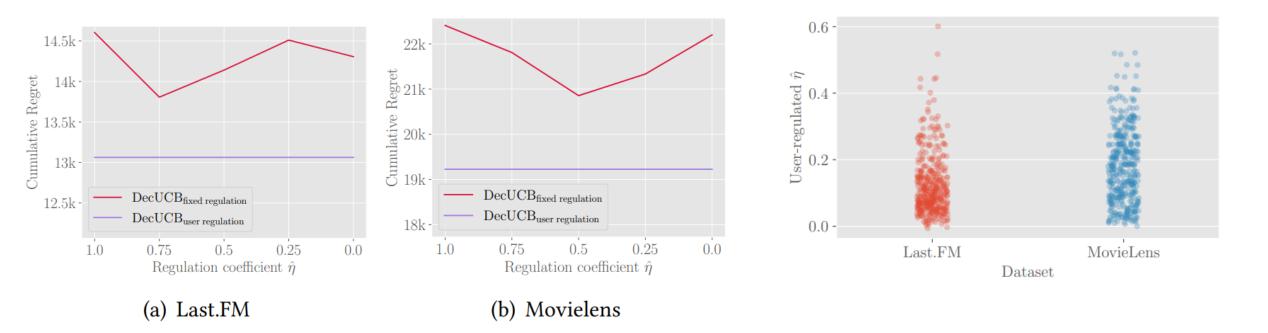
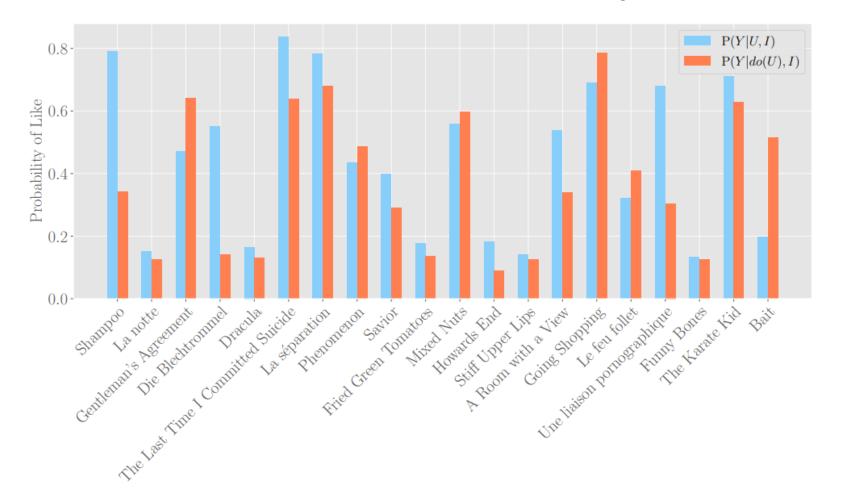


Figure 7: Visualization of user regulation coefficient $\hat{\eta}$ on Figure 6: Effect of different regulation coefficient $\hat{\eta}$. Last.FM and MovieLens dataset.

Figure 5: Prediction scores of movies in MovieLens dataset before and after *do*-calculus of backdoor adjustment.



Conclusion

- We studied the biases in CRS from a causal perspective.
- We proposed a Deconfounded CRS that effectively alleviate biases.
- We enable users to provide feedback to adaptively regulate debiasing.

Future Work

- More fine-grained user feedback for more accurate bias identification.
- Explainable CRS modelling more accurate causal relations.

Contact: xiayu9@sjtu.edu.cn