Which LLM to Play? Convergence-Aware Online Model Selection with Time-Increasing Bandits

Yu Xia^{1,2}, Fang Kong¹, Tong Yu³, Liya Guo⁴, Ryan A. Rossi³, Sungchul Kim³, Shuai Li^{1*} ¹Shanghai Jiao Tong University, ²University of Michigan, ³Adobe Research, ⁴Tsinghua University

Yu Xia 05/16/2024

Motivation

• So many powerful LLMs nowadays!

- -
- - _
 - -

Motivation

- So many powerful LLMs nowadays!
- Different sizes and different strengths

- -
- -
- - -
 - .

Motivation

- So many powerful LLMs nowadays!
- Different sizes and different strengths

Then,

Which model should I use for a task?

Traditional Model Selection

- First train all candidates with all data
- Observe all model performances
- Then select the best one

Traditional Model Selection

- First train all candidates with all data
- Observe all model performances
- Then select the best one

However,

LLMs are expensive to train!

Online Model Selection

- Train only one candidate each time per data sample
- Predict all model performances after training
- Select potentially best model for further exploration

Online Model Selection

Figure 1: An illustrative example of online model selection for LLM summarization.

• Capture the increasing-then-converging reward trend

Figure 2: Increasing-then-converging reward trends of an API-based LLM (GPT-3 Davinci) and a local small LLM (GPT2 Medium) over finetuning steps on a text summarization dataset. The reward considers both model performance and finetuning cost.

- Multi-armed bandits formulation
 - Each candidate model as an arm
 - Model utility (e.g., performance, cost) as reward
 - The reward of an arm increases each time the arm is pulled (time-increasing reward)
 - Exploration & Exploitation tradeoff

- Time-Increasing UCB
- See Appendix A of our paper for theoretical analysis

7/1
Algorithm 1 TI-UCB
Input:
<i>K</i> , δ , window size ω , threshold γ ;
Output:
Initialize: $\tau'_i \leftarrow 1, n_i \leftarrow 0, \forall i \in [K];$
1: for $t = 1,, T$ do Linear Increase Prediction
2: for $i = 1,, K$ do
3: $\bar{\mu}_{i,n_i(t)} = \hat{\mu}_{i,n_i(t)} + 16\sqrt{\frac{2\ln(1/\delta)}{n_i(t)}};$
4: end for 5: Pull arm $A_t \leftarrow \operatorname{argmax}_i \bar{\mu}_{i,n_i(t)}$; Upper Confidence Bound
6: Observe reward $X_{A_t,t}$;
7: Update estimation $\hat{\mu}_{i,n_i(t)}$;
8: Update number of pulls $n_{A_t}(t) \leftarrow n_{A_t}(t) + 1$;
9: if $n_{A_t}(t) \ge 2\omega$ then
10: if $ \hat{\mu}_{w_1,A_t}(t+1) - \hat{\mu}_{w_2,A_t}(t+1) > \frac{\gamma}{2}$ for arm A_t then
11: $\tau'_{A_t} \leftarrow t \text{ and } n_{A_t}(t) \leftarrow 1;$
^{12:} end if Sliding Window Change Detection
13: end if
14: end for

Logarithmic Regret Upper Bound

Theorem 1. Assume that $\delta \leq 1/T$, then the expected regret of *TI-UCB algorithm is bounded by*

$$\mathbb{E}[R(T)] \leq \sum_{i:n_i(T) \geq n_i^*(T)} c_i \frac{4096 \ln(T)}{\Delta_{\min}^2} + K\left(\frac{2\pi^2}{3} + \omega + 2 + 2L\right) + 2,$$

where $\Delta_{\min} = \min_{t \in [0,T], i \neq i_t^*} \{\mu_{i_t^*}(t) - \mu_i(t)\}\$ is the minimum gap between the optimal reward and the true reward and L is a constant smaller than $\ln T$.

• See Appendix B of our paper for proof

• Evaluation metric:

Empirical Cumulative Regret

• Compared Baselines:

$$\mathbf{ret} \quad \widehat{R(T)} = \sum_{i=1}^{K} \left[\sum_{s=1}^{n_i^*(T)} \hat{\mu}_{i,s} - \sum_{s=1}^{n_i(T)} \hat{\mu}_{i,s} \right]$$

- **KL-UCB** [17]: a classic stationary bandit algorithm utilizing KL Divergence.
- **Rexp3** [3]: a non-stationary bandit algorithm based on variation budget.
- Ser4 [1]: a non-stationary bandit algorithm that takes into account the best arm switches during the process.
- **SW-TS** [46]: a sliding-window bandit algorithm with Thompson Sampling that generally handles non-stationary settings well.
- **SW-UCB** [18]: a sliding-window bandit algorithm with UCB that can handle general non-stationary settings.
- **SW-KL-UCB** [10]: a sliding-window bandit algorithm with KL-UCB.
- **R-ed-UCB** [33]: a recent non-stationary bandit algorithm designed for similar scenarios as ours with non-decreasing and concave rewards.
- Auto-Sklearn [13]: the state-of-the-art AutoML system utilizing Bayesian optimization-based solution.

• Synthetic model selection

Synthetic reward functions randomly selected from

$$F_{\text{exp}} = \left\{ f(t) = c \left(1 - e^{-at} \right) \right\} \text{ and}$$
$$F_{\text{poly}} = \left\{ f(t) = c \left(1 - b \left(t + b^{1/\rho} \right)^{-\rho} \right) \right\}$$

(a) 2-Arm Bandits: Reward Functions (b) 2-Arm Bandits: Cumulative Regret (c) 15-Arm Bandits: Reward Functions (d) 15-Arm Bandits: Cumulative Regret Figure 3: Online selection of generated synthetic models covering a variety of increasing-then-converging patterns.

Classification model selection

Canonical classification models on IMDB review dataset, e.g., LR: logistic regression, NB: naive bayes, NN: neural network.

(a) IMDB Bandits: Reward Functions (b) IMDB Bandits: Cumulative Regret

• LLM selection

LLMs of different sizes and costs on XSum summarization data. Reward: $X_t = \text{ROUGE-2} - \eta_t$ Finetuning Cost: $\eta_t = \eta_{t-1} + m \cdot 1$ [Do Finetuning] with $\eta_0 = 0$

(a) LLM Bandits: Reward Functions (b) LLM Bandits: Cumulative Regret

• Ablation on Change Detection Window Size

We vary the sliding window size to test the sensitivity of TI-UCB performances to performance fluctuations.

Findings & Conclusion

- Capturing the increasing-then-converging performance trends, TI-UCB outperformed all baselines in online model selection.
- By integrating finetuning cost into reward design, TI-UCB promisingly balances cost and performance for practical deployment of LLMs.
- Customized change detection window sizes can flexibly tackle fluctuations in model performance during training.

Contact: xiayuu@umich.edu Paper:

